
NASA-TIq-111486
f

/

Using Fuzzy Logic for Performance

Evaluation in Reinforcement Learning

Harold R. Berenji

Intelligent Inference Systems Corp.

AI Research Branch, MS: 269-2
NASA Ames Research Center

Mountain View, CA 94035

Pratap S. Khedkar 1

CS Division, Department of EECS.

University of California at Berkeley,

Berkeley, CA 94720

khedkar@cs, berkeley, edu

Abstract

Current reinforcement learning algorithms require long training

periods which generMly limit their applicability to small size problems.

A new architecture is described which uses fuzzy rules to initialize its

two neural networks: a neural network for performance evaluation and

another for action selection. This architecture is applied to control of

dynamic systems and it is demonstrated that it is possible to start

with an approximate prior knowledge and learn to refine it through

experiments using reinforcement learning.

1 INTRODUCTION

Reinforcement Learning (RL) can be used in domains where learning has

to be done without the presence of a direct supervisor and through a distal

teacher. Unlike supervised learning, an explicit error signal is not assumed

in RL and external reinforcement may be delayed. In GARIC [1], RL is

1Supported l)y NASA grant NCC-2-275 and MICRO

I
I

r I

Action

Evaluation

Network
I
f
I

Action

Selection

Network

t weightupdates,]

internal /

1 reinforc_ntaent

/ pertulrbation

I I I "_1 St(_chastic I F' I Physical /
I Action _System |

.......I ____1
_c°tin°'_nn ended _--_

I I Failure

State J J Signa!

Figure 1: The architecture of GARIC

combined with Fuzzy Logic Control (FLC) [2] to refine the knowledge base

of a controller. GARIC is composed of three main elements: an Action

Selection Network (ASN) which maps the state to an action using fuzzy

control rules; an Action-state Evaluation Network (AEN) which evaluates

the action and the resulting system state; and a Stochastic Action Modifier

(SAM) which explores the search space for possible actions (see Figure 1).

In GAI{IC, fuzzy inference is used only in the ASN to incorporate prior

knowledge as well as to handle continuous input-output without artificial

discretizing. The AEN remained a two-layer feed forward neural net, which

starts with random weights, an ad hoc architecture, and which may not be

able to handle complex tasks.

In this paper, concentration is on using fuzzy inference in the design and

operation of the evaluation network. Specifically, the problem of how to use

prior knowledge to design the architecture is addressed getting a head start

on tile way of learning to evaluate. Fuzzy rules are used to represent the

heuristic knowledge of state evaluations.

2

1 2 3 4 5

Inputs Antecedent Rules Censeq uent Output
Labels Labels

iiiii_i?yi:_:_:x:::_:::i:ii:?ii?ii ii_!!!!!!:_._!:!!!!!.-...:!i:i:::i:i:i_:i:ix

v _ _!i / Weighted Sum

Match Softmin Local Mes n-of-Msx

Figure 2: The Action Evaluation Network

2 NETWORK ARCHITECTURE

Earlier, Anderson [3] used conventional neural nets to implement both the

ASN and AEN, but since these were initialized randomly, learning needed

a large number of trials. In GARIC [1], the ASN was initialized using ap-

proximate rules, which were used to drive a neural net implementing fuzzy

inference. The incorporation of heuristic knowledge led to substantial re-

duction in learning time. Here, this principle is further extended by being

applied to the AEN (the evaluation critic) and by using fuzzy rules that will

help in computing the goodness of a state.

To build in fuzzy rules into the net, some modifications in its structure

are required. Both the ASN and AEN will now have similar architectures,
and each is based on some initial rule base. The structure of the net consists

of 5 layers, connected in feedforward fashion, and shown in Figure 2.

Layer 1 is the input layer and performs no computation.

A Layer 2 node represents one possible linguistic value of one of the input

variables. It computes #c(x), and outputs using the clause: if x is L in their

if part.

Layer 3 implements the conjunction of all the antecedent conditions in a

rule using the softmin operation. There is one node per rule here; its inputs

come from all its antecedents, and it produces w_, the degree of applicability
of rule r.

A Layer 4 node represents a consequent label. Its inputs come from all

rules which use this consequent label. For each w_ supplied to it, this node

computes the corresponding output action as given by rule r.

A Layer ,5 node combines the recommended actions from all the rules,

using a weighted sum, the weights being the rule strengths w,. In the AEN,

a state score v is produced (see [1] for more details). Learning modifies

weights into Layers 2 and 4 only, the others being fixed at unity.

3 LEARNING IN THE AEN

Tile learning algorithm is largely determined by the choice of the objective

function used by each component for optimization. Two such choices and the

corresponding results are described. For both policies, both AEN and ASN

learn simultaneously as per the learning cycle outlined in Figure 3. Also for

both policies discussed here, AEN outputs v which is then combined with an

external reinforcement r to produce ÷.

In policy 1, the ASN retains its earlier objective of maximizing the state-

score v. However, the AEN tries to maximize the internal reinforcement F,

since ÷ _ 0 is a good prediction of failure and a high r_ otherwise is equivalent

to moving to better states. Tuning the AEN parameters to attain this is done

by computing OF�Or from

+ 11= {

0

r[t + 1]- v[t,t]

r[t + 1] + 7v[t,t + 1] - v[t,t]

starting state ;

failure state;

otherwise.
(1)

Then a gradient descent method leads to,

O_ 8v

Ap = rl Or" Op' (2)

where _°e di'/dv = (1 - 7) + 7(d2v), assuming the derivative doesn't depend

on r. The second derivative of v is approximated by the finite difference

v[t]- 2v[t - 1] + v[t - 2], and only the sign o_ is used so that noise is reduced.

The term cOv/cgp is the dependence of the net output on its parameters (the

4

load-state();

,,t-_ = evaluate-state(); /* AEN:I */

apply-action(action = SAM(select-action(),_,_l)); ,/* ASN:I */

load-state();

,,, = evaluate-state();/* AEN:e */

compute r_t, gradients;

modify-parameters();/* learn as per data in AEN:I a_d ASN:I */

Figure ,3: Steps in a learning cycle

centers and spreads of the membership functions) and can be easily computed

using a backpropagation-like scheme [1}.

In policy 2, a different objective function can be used. If the future,

discounted reward be equal to _j>0 "fJ-lrt+j, then v may be interpreted as

a truncation of this series to 1 or 2 terms. For good prediction, v(t) should

closely approximate r(t + 1). Thus minimizing the error (v_- r_+l) 2 is needed.

Learning in both AEN and ASN is geared towards this same objective.

4 RESULTS

4.1 CART-POLE BALANCING

In this problem a pole is hinged to a cart which moves along one dimension.

Tile control tasks are to keep the pole vertically balanced and the cart within

the track boundaries. Tile displacement and velocity of the cart (x, _:), and

of the pole (0, _}) is the system state. The action is the force F to be applied

to the cart. A failure occurs when]01 > 12 ° or Izl > 2.4 m, whereas a success

is when the pole stays balanced for 100000 timesteps (m 33 minutes of real

time). ÷ is calculated using 7 = 0.9. Also, hMf-pole length = 0.5 m, pole

mass = 0.1 kg, cart mass = 1.0 Kg. A trial lasts from an initial state to

success or failure.

The design of the initial ASN rule base is from [4, 5], and results in 9 and

4 rules for controlling the pole and cart respectively. So the architecture has

4 inputs, 14 units in layer 2 (the number of antecedent labels), 13 units in

layer :3 (the number of rules), 9 units in layer 4 (the number of consequent

5

NE

ZE

VS

PO

NE ZE PO VS

, Di.......iiii'.ii
3K

NE ZE PO VS

I.":...!l..........H......................
LJLJL...............

Z_.

X-
0

PO

N-VS Z E PVS

- 0 2 5 i0 15 20

Figure 4: The 9+4 rules for the ASN; four qualitative labels for each input,

and nine labels for Force.

labels) and one output (force) as shown in Figure 4. The AEN is started

with 10 rules, with 4,12,10,3, and 1 nodes in its 5 layers respectively. All

the rules and membership functions involved are shown in Figure 5. The

resulting input-output functions are shown in Figure 6.

The experiments performed are of three types: (a) changes of tolerance

and physical system values, (b) damage to parameters of the membership

functions, (c) changes to the rule base reflecting different granularity. The

damages to parameters can be for the AEN or ASN or both. Learning is

by Policy 1 or 2. In the following figures, each graph shows the first two

trials (up to 6 sec), and the first and last 6 sec of the final (successful) trial.

Both policies are considered. Some runs are shown and explained in Figures

7,8,!) for Policy 1 and Figures 10,11, 12 for Policy 2. The learning is quicker

by about one or two orders of magnitude, when compared to a randomly

started AEN. Overall, Policy 1 is better, learning faster and shifting labels

consistently.

4.2 BACKING UP A TRUCK

This problem involves backing up a truck so that it reaches a loading dock at

a right angle. Tile two inputs are the x-coordinate of the rear of the truck,

and its angle (¢) to the horizontal. The output is the steering-angle (0). The

ASN rules are from [6], whereas the AEN rules were approximately designed

PO ZE NE

_o__E
..........._E

NE

IrIT'r'T'T

PO ZE NE

_l_iliiiiiiil

zm

NE PO

O +

--___//GOC, D

0 0.2 0.5 0.7 1.0

BAD

State Score v

Figure 5: Tile 5+5 rules for the AEN, followed by the membership functions

(3 each for the 4 input and 1 output variable).

FORCE

AEN] v

Figure 6: I/O surfaces implemented.

7

-6.00 --

POLE ANGLE (deg) CART POSITION (m)

Figure 7: Policy 1, 3 antecedent AEN labels, 2 consequent AEN labels and

3 consequent ASN labels damaged. Start position = -0.1. Learning took 3
trials.

3.oo--I

0.00 --

-1 .SO --

POLE ANGLE (deg) CART POSITION (m)

-0.1

Figure 8: Policy 1, Tolerance changes: 101• 0.2 --, 0.1, I=1 : 2.4 --, 0.4,

/.0.5 _ 0.4, Start position = 0.05. Learning took 3 trials.

8

POLE ANGLE (deg) CART POSITION (m)

-12.00 --

. -- _,/-vv V

Figure 9: Policy 1, Ix] • 2.4 --+ 0.5, AEN: 3 antecedent, 1 consequent labels

changed, random start-positions. Learns in 4 trials.

O.OC"

-1 .5O

POLE ANGLE (deg)

i

vv" ' ,,,,v.v V

0.4

0.00

0 Of 5

CART POSITION (m)

Figure 10: Policy 2, Same change as Figure 8, learnt in 18 trials.

O.O_

3 O0

POLE ANGLE (deg) CART POSITION (m)

Figure ll: Policy 2, good and bad both changed to center at -1. good was
shifted to 0.

i
!

-I _ .oo

Figure 12:
trials.

POLE ANGLE (deg)

TIME STEPS

-0.40

CART POSITION (m)

\
TIME STEPS

Policy 2, mc,_rt = 2 kg (from 1 kg). Random starts, learnt in 4

based on simple considerations and are given in Figure 13. The evaluation

here is based on the same inputs x and ¢, and the basic surface generated

by the AEN is quite similar to the one used in the pole-balancing problem.

Since it is desirable for the truck to be centered and pointing straight down,

(50, 90) is a good state. When x is left of center, an angle less than 90 is

desirable, since it can then approach the center line quickly. However, and

angle greater than 90 is a bad state, since more maneuvering is required.

Using these considerations, five simple rules were devised for the AEN.

The GARIC architecture for this problem has 2,12,35,7 and 1 units in

the ASN layers, and 2,6,5,3 and 1 units in the AEN layers respectively. The

initial ASN rulebase assumes sufficient y-coordinate clearance.

The results presented in Figures 14 and 15 are from the older scheme

when the AEN was a randomly initialized neural net. In Figures 16 and 17,

we see results when the AEN is initialized using the rules discussed before.

The ASN uses the same 35 rules in all cases. The curves show the pre- and

post-learning paths of the rear-end of the truck.

An interesting phenomenon was observed when the damage was too great

to rectify. Since _ maximization is the goal, the system usually manages to

achieve it via correction of the ASN labels. However, when the damage here

is such that correction is not done quickly, the gradient descent mechanism

begins to act with increasing pressure on the AEN output labels, specifically,

the label "good". It is the definition of these labels that plays a key role in

defining the value of v, and therefore ÷. In fact, the system discovers that

steadily increasing the value of v by pushing the label "good" to the right, is

10

LT

CE

RT

LT VE RT

i',lbad ok lill

i:i:'.:.:-:.:-:-:-:-:+:.:-:.:;:.:i:_:+:':':':p:;:;:':-:':+:-:':'_ :':':':+:':':-:-:':':':':;:':;:;:_:il

ii good
"- r,:.! , ,

i':ilok

::::::::::::::::::::::::::::::::::::: ::::::::::::::::::::::::::::::::::

bad I',_i
:::::::::::::::::::::::::::::::::::::::

20 50 70

-20 50 90 160

BAD

GOOD

0 0.4 0.5 0.7 1.0

State Score v

Figure 13: The 5 rules which evaluate the state for the truck-docking prob-

lem, and the 9 membership functions needed (3 per variable).

11

_oo.oi

80.01

Y

BEFORE

AFTER

60.0(

i

40.01

i0.00

Dock

(

J
50.00

Figure 14: Learning to back up a truck when AEN is not initialized with

rules and linguistic labels are incorrect.

12

i00.0 Dock]

TRUCK /

i0.00 50.0(] X

Figure 15: Learning to back up a truck when AEN is not initialized with rules

and inference is done with incomplete knowledge (y-coordinate not known).

13

i00.0

BEFORE

AFTER

i<
20.00

i0.00

Dock I

50.00

Figure 16: Learning to back up a truck when the AEN is initialized using

fuzzy rules, then extensive label damage is quickly repaired.

14

i00.00
Dock

0.00

0.00 20.00 40.00 60.00 80.00 i00.00

Figure 17: Learning to back up a truck when the AEN is initialized using

fuzzy rules, then learning occurs even when the start-position after each

failure is randomly chosen.

15

a better way to achieve high _, at least in all those time steps which are not

labeled as failure. Therefore, except in the instant where the truck actually

falls off the platform, the system redefines "good" so as to appear to be doing

well even when it is not learning in the desired way. This phenomenon can

be eleminated by either hard-limiting the positions of the AEN labels, or by

reducing the learning rate on them (as compared to the 71for the ASN). This

may also be the result of choosing _ as the objective function rather than some

other measure. Of course, choosing v in its place (as was done for the ASN

in GARIC earlier) would lead to a similar problem. Since absolute scales for

both v and _ are quite meaningless, restricting them to any arbitrary range

is permissible, so a hard-limit may be a reasonable solution here.

5 CONCLUSION

A nonrandom initialization of the neural networks, if guided by heuristic

knowledge will substantially speed up learning. Extensive retraining is un-

necessary if there are tolerance/parameter changes. A unified approach is

shown by which a few simple, heuristic and imprecise rules can be directly

built into a neural network as a starting configuration, and all subsequent

tuning is performance-dri_'en and automated. By doing this, we gain sub-

stantially in learning speed and achieve a uniform integration of RL and fuzzy

inference. By changing the rules, the state of the system is kept within a

particular region of the state-space. More informative reinforcement signals

can be easily incorporated. For complex tasks, inclusion of prior knowledge

can have a significant effect on learning speed. This hybrid method offers a

broader scope by combining the robustness of fuzzy logic and the learnability

of neural nets.

References

[1] H,R. Berenji and P. Khedkar. Learning and tuning fuzzy logic controllers

through reinforcements. [EEE Transactions on Neural Networks, 3(5),

1992.

16

[2] H. R. Berenji. Fuzzy logic controllers. In R. R. Yager and L.A. Zadeh, ed-

itors, An Introduction to Fuzzy Logic Applications in Intelligent Systems,

pages 69-96. Kluwer Academic Publishers, 1991.

[3] C. W. Anderson. Learning to control an inverted pendulum using neural

networks. IEEE Control Systems Magazine, 9(3):31-37, 1989.

[4] H. R. Berenji, Y. Y. Chen, C. C. Lee, S. Murugesan, and J. S. Jang. An

experiment-based comparative study of fuzzy logic control. In American

Control Conference, Pittsburgh, 1989.

[5] H.R. Berenji, Y.Y. Chen, C.C. Lee, J.S. Jang, and S. Murugesan. A hi-

erarchical approach to designing approximate reasoning-based controllers

for dynamic physical systems. In P.P. Bonissone, M. Henrion, L.N. Kanal,

and J. Lemmer, editors, Uncertainty in Artificial Intelligence: Volume

VI, in the series Machine Intelligence and Pattern Recognition, pages

331-343. Elsevier, North-Holland, 1991.

[6] B. Kosko. Neural Networks and Fuzzy Systems. Prentice Hall, 1992.

17

